线程池C++版本
C++版本的线程池,相较于之前写的C版本的线程池,简洁许多,因为对于任务队列,C++中有容器可以使用,不用自己设计队列,并且对队列的节点进行增删擦偶哦;此外C++中有析构函数,在程序结束之后,会自动执行析构函数,可以将资源回收等操作放到析构函数中
一、线程池C++实现
1.头文件
pthreadpool.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
| #pragma once
#include <thread> #include <queue>
using callback = void (*)(void *);
class Task{ public: callback m_function; void *m_arg;
Task():m_function(nullptr),m_arg(nullptr){}
Task(callback f,void *arg):m_function(f),m_arg(arg){} };
class TaskQueue{ private: pthread_mutex_t m_mutex; std::queue<Task> m_queue; public: TaskQueue(); ~TaskQueue();
void addTask(Task &task); void addTask(callback func,void *arg);
Task taskTask();
inline int taskNumber(); };
class ThreadPool { public: ThreadPool(int min,int max); ~ThreadPool();
void addTask(Task task); int getBusyNumber(); int getAliveNumber();
private: static void *worker(void *arg); static void *manager(void *arg); void threadExit();
private: pthread_mutex_t m_lock; pthread_cond_t m_notEmpty; pthread_t *m_threadIDS; pthread_t m_manageID; TaskQueue *m_taskQ; int m_minNum; int m_maxNum; int m_busyNum; int m_aliveNum; int m_exitNum; bool m_shutdowm = false; };
|
2.源文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
| #include <iostream> #include <cstring> #include <string> #include <chrono>
#include "pthreadpool.h"
inline int TaskQueue::taskNumber() { return m_queue.size(); }
TaskQueue::TaskQueue() { pthread_mutex_init(&m_mutex,NULL); }
TaskQueue::~TaskQueue() { pthread_mutex_destroy(&m_mutex); }
void TaskQueue::addTask(Task &task) { pthread_mutex_lock(&m_mutex); m_queue.push(task); pthread_mutex_unlock(&m_mutex); }
void TaskQueue::addTask(callback func,void *arg) { pthread_mutex_lock(&m_mutex); Task task; task.m_function = func; task.m_arg = arg; m_queue.push(task); pthread_mutex_unlock(&m_mutex); }
Task TaskQueue::taskTask() { Task t; pthread_mutex_lock(&m_mutex); if(m_queue.size() > 0) { t = m_queue.front(); m_queue.pop(); } pthread_mutex_unlock(&m_mutex); return t; }
ThreadPool::ThreadPool(int min, int max) { m_taskQ = new TaskQueue; do { m_minNum = min; m_maxNum = max; m_busyNum = 0; m_aliveNum = min;
m_threadIDS = new pthread_t[m_maxNum]; if(m_threadIDS == nullptr) { std::cerr << "malloc thread_t[] failed..." <<std::endl; break; } memset(m_threadIDS,0, sizeof(pthread_t) * m_maxNum); if(pthread_mutex_init(&m_lock,NULL) != 0 || pthread_cond_init(&m_notEmpty,NULL) != 0) { std::cerr << "init mutex or condition failed..." <<std::endl; break; }
for(int i=0;i<m_minNum;i++) { pthread_create(&m_threadIDS[i],NULL,worker, this); } pthread_create(&m_manageID,NULL,manager,this);
}while(0); }
ThreadPool::~ThreadPool() { m_shutdowm = 1;
for(int i = 0;i<m_aliveNum;i++) { pthread_cond_signal(&m_notEmpty); }
pthread_join(m_manageID,NULL);
if(m_taskQ) delete m_taskQ; if(m_threadIDS) delete []m_threadIDS;
pthread_mutex_destroy(&m_lock); pthread_cond_destroy(&m_notEmpty); }
void ThreadPool::addTask(Task task) { if(m_shutdowm) { return; } m_taskQ->addTask(task); pthread_cond_signal(&m_notEmpty); }
int ThreadPool::getAliveNumber() { int threadNum = 0; pthread_mutex_lock(&m_lock); threadNum = m_aliveNum; pthread_mutex_unlock(&m_lock); return threadNum; }
int ThreadPool::getBusyNumber() { int busyNum = 0; pthread_mutex_lock(&m_lock); busyNum = m_busyNum; pthread_mutex_unlock(&m_lock); return busyNum; }
void *ThreadPool::worker(void *arg) { ThreadPool *pool = static_cast<ThreadPool *>(arg); while(1) { pthread_mutex_lock(&pool->m_lock); while(pool->m_taskQ->taskNumber() == 0 && !pool->m_shutdowm) { std::cout << "Worker Thread " << std::to_string(pthread_self()) << " waiting..." <<std::endl; pthread_cond_wait(&pool->m_notEmpty,&pool->m_lock);
if(pool->m_exitNum > 0) { pool->m_exitNum--; if(pool->m_aliveNum > pool->m_minNum) { pool->m_aliveNum--; pthread_mutex_unlock(&pool->m_lock); pool->threadExit(); } } }
if(pool->m_shutdowm) { pthread_mutex_unlock(&pool->m_lock); pool->threadExit(); }
Task task = pool->m_taskQ->taskTask(); pool->m_busyNum++; pthread_mutex_unlock(&pool->m_lock); task.m_function(task.m_arg); delete task.m_arg; task.m_arg = nullptr;
pthread_mutex_lock(&pool->m_lock); std::cout << "Worker Thread: " << std::to_string(pthread_self()) << " end working..." << std::endl; pool->m_busyNum--; pthread_mutex_unlock(&pool->m_lock); } return nullptr; }
void *ThreadPool::manager(void *arg) { ThreadPool *pool = static_cast<ThreadPool *>(arg);
while(!pool->m_shutdowm) { std::this_thread::sleep_for(std::chrono::seconds(3));
pthread_mutex_lock(&pool->m_lock); int queueSize = pool->m_taskQ->taskNumber(); int liveNum = pool->m_aliveNum; int busyNum = pool->m_busyNum; pthread_mutex_unlock(&pool->m_lock);
const int NUMBER = 2; if(queueSize > liveNum && liveNum < pool->m_maxNum) { pthread_mutex_lock(&pool->m_lock); int num = 0; for(int i=0;i<pool->m_maxNum && num < NUMBER &&pool->m_aliveNum < pool->m_maxNum;i++) { if(pool->m_threadIDS[i] == 0) { pthread_create(&pool->m_threadIDS[i],NULL,worker,pool); num++; pool->m_aliveNum++; } } pthread_mutex_unlock(&pool->m_lock); }
if(busyNum*2 < liveNum && liveNum > pool->m_minNum ) { pthread_mutex_lock(&pool->m_lock); pool->m_exitNum = NUMBER; pthread_mutex_unlock(&pool->m_lock); for(int i = 0;i<NUMBER;i++) { pthread_cond_signal(&pool->m_notEmpty); } } } std::cout << "Manager Thread Exiting ID: " << std::to_string(pthread_self()) <<std::endl; pthread_exit(NULL); }
void ThreadPool::threadExit() { pthread_t tid; for(int i=0;i<m_maxNum;i++) { if(tid == m_threadIDS[i]) { std::cout << "threadExit() called,Thread ID: " << std::to_string(pthread_self()) << " Exiting...." << std::endl; m_threadIDS[i] = 0; break; } } pthread_exit(NULL); }
|
3.测试代码
main.c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
| #include <iostream> #include <chrono> #include <string> #include "pthreadpool.h"
void taskFunc(void* arg) { int num = *((int*)arg); std::cout << "Thread: " << std::to_string(pthread_self()) << " is working,num = " << num <<std::endl; std::this_thread::sleep_for(std::chrono::seconds(1)); }
int main() { ThreadPool pool(3,10); for(int i = 0;i<10;++i) { int *num = new int(i+1); pool.addTask(Task(taskFunc,num)); }
std::this_thread::sleep_for(std::chrono::seconds(12));
return 0; }
|
CMakeLists.txt
1 2 3 4 5 6 7 8 9 10
| cmake_minimum_required(VERSION 3.19) project(ThreadPoolC__)
set(CMAKE_CXX_STANDARD 14)
find_package(Threads REQUIRED)
add_executable(ThreadPoolC__ main.cpp pthreadpool.cpp)
target_link_libraries(ThreadPoolC__ PRIVATE Threads::Threads)
|
编译运行,结果如下:

这个程序中的输出操作可以注释掉,因为可能上一个输出代码还没有执行完毕,下一个线程就可以执行了,因此可能会造成终端输出比较混乱